Warning: Illegal string offset 'twitter' in E:\websites\blogs.ifas.ufl.edu\wp-content\themes\organic-origin-child\functions.php on line 126

Warning: Illegal string offset 'gplus' in E:\websites\blogs.ifas.ufl.edu\wp-content\themes\organic-origin-child\functions.php on line 155
Lionfish in an aquarium at 4H Camp Timpoochee

Researchers Test Traps for Controlling Deepwater Invasive Lionfish

Non-containment lionfish traps being tested by the University of Florida offshore Destin, FL. Invasive lionfish are attracted to the lattice structure, then captured by netting when the trap is pulled from the sea floor. The trap may have the potential to control lionfish densities at depths not accessible by SCUBA divers. [ALEX FOGG/CONTRIBUTED PHOTO]

Article written by: Laura Tiu, Holden Harris and Alex Fogg

It’s early morning as Dreadknot Charters speeds out of Destin Harbor towards the offshore reefs in the Gulf of Mexico.  Researchers Holden Harris (Graduate Research Fellow, University of Florida), Alex Fogg, (Marine Resource Coordinator, Okaloosa County), and the Dreadknot crew, Josh and Joe Livingston, ready their equipment on board. They’re working on a new method of capturing invasive lionfish: deepwater traps.

Red lionfish (Pterois volitas / P. miles) are a popular aquarium fish with striking red and white strips and graceful, butterfly-like fins. Native to the Indo-Pacific region, lionfish were introduced into the wild in the mid-1980s, likely from the release of pet lionfish into the coastal waters of SE Florida. In the early 2000s lionfish spread throughout the US eastern seaboard and into the Caribbean, before reaching the northern Gulf of Mexico in 2010. Today, lionfish densities in the northern Gulf are higher than anywhere else in their invaded range.

Invasive lionfish negatively affect native reef communities. They consume and compete with native reef fish, including economically important snappers and groupers. Their presence has shown to drive declines in native species and diversity. Lionfish possess 18 venomous spines that appear to deter native predators. The interaction of invasive lionfish with other reef stressors – including ocean acidification, overfishing, and pollution – is of concern to scientists.

Lionfish harvest by recreational and commercial divers is currently the best means of controlling their densities and minimizing their ecological impacts. Lionfish specific spearfishing tournaments have proven successful in removing large amounts in a relatively short amount of time. This year’s Lionfish Removal and Awareness Day removed almost 15,000 lionfish from the Northwest Florida waters in just two days. Lionfish is considered to be an excellent quality seafood, and they are now being targeted by a handful of commercial divers. Several Florida restaurants, seafood markets, and grocery stores chains are now regularly serving lionfish.

While diver removals can control localized lionfish densities, the problem is that lionfish also inhabit reefs much deeper than those that can be accessed by SCUBA divers. Surveys of deepwater reefs show lionfish have higher densities and larger body sizes than lionfish on shallower reefs. In the Gulf of Mexico, the highest densities of lionfish surveyed were between 150 – 300 feet. While SCUBA diving is typically limited to less than 130 feet, lionfish have been observed deeper than 1000 feet.

For the past several years, researchers have been working to develop a trap that may be able to harvest lionfish from deep water. Dr. Steve Gittings, Chief Scientist for the Office of National Marine Sanctuaries at the National Oceanic and Atmospheric Administration, has spearheaded the design for a “non-containment” lionfish trap. The design works to “bait” lionfish by offering a structure that attracts them. The trap remains open while deployed on the sea floor, allowing fish to move in and out of the trap footprint. When the trap is retrieved, a netting is pulled up around the fish inside and they are brought to the surface.

The researchers are headed offshore to retrieve, redeploy, and collect data on the lionfish traps. Twelve non-containment traps are currently being tested offshore NW Florida. The research is supported by a grant from the Florida Fish and Wildlife Conservation Commission. The study will try to answer important questions for a new method of catching lionfish: where and how can the traps be most effective? How long should they be deployed? And, is there any bycatch (accidental catch of other species)?

Recent trials have proved successful in attracting lionfish to the trap with minimal bycatch. Continued research will hone the trap

Lionfish trap (Alex Fogg).

design and assess how deployment and retrieval methods may increase their effectiveness. If successful in testing, lionfish traps may become permitted for use by commercial and recreational fisherman. The traps could become a key tool in our quest to control this invasive species and may even generate income while protecting the deepwater environment.

Outreach and extension support for the UF’s lionfish trap research is provided by Florida Sea Grant. For more information contact Dr. Laura Tiu, Okaloosa and Walton Counties Sea Grant Extension Agent, at lgtiu@ufl.edu / 850-689-5850 (Okaloosa) / 850-892-8172 (Walton).

3 Comments on “Researchers Test Traps for Controlling Deepwater Invasive Lionfish

    • Lionfish are attracted to structure and the lattice acts as structure. Earlier prototypes were bulkier and weren’t able to be stacked (more room on the boat) like the current design is. The lattice is 2D so can be easily closed within the trap. This was mostly figured out through iterative design ideas and trials by Steve Gittings.

  1. So glad UF is taking the lead in trying to find ways to reduce lion fish population. If there is no form of control then the fishing industry is doomed. I would support the federal government subsedizing fisherman to harvest lion fish to make it profitable to them.. Then we can make a dent in this distructive fish.

Leave a Reply

Your email address will not be published. Required fields are marked *